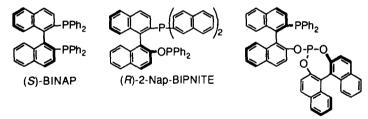


PII: S0040-4039(97)00988-X

Asymmetric Hydroformylation of Allylic Alcohols Catalyzed by Rh(I)-(R,S)-BINAPHOS


Kyoko Nozaki*, Wen-ge Li, Toshihide Horiuchi, Hidemasa Takaya*†

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-01, Japan

Abstract: Chiral lactones 4a-e were synthesized by the asymmetric hydroformylation of allylic alcohols 1a-e and 5 catalyzed by a rhodium(I) complex of a chiral phosphine-phosphite, (R,S)-BINAPHOS, followed by the silver(I) oxidation. © 1997 Elsevier Science Ltd.

Regio- and enantioselective preparation of substituted tetrahydrofurans and γ -butyrolactones has been an attractive subject since these heterocycles are important subunits for biologically important compounds including natural products. Cyclocarbonylation of allylic alcohols is a direct method for the synthesis of γ -butyrolactones,¹ and palladium complexes with chiral ligands have been developed for asymmetric processes.^{1b,f} Asymmetric hydroformylation of allylic alcohols followed by oxidation is of much interest as an alternative.² In contrast to the extensive efforts devoted to this subject using achiral catalysts,³ only a few reports have appeared on the asymmetric hydroformylation of allylic alcohols.⁴ We recently have developed a new Rh(I) catalyst system for asymmetric hydroformylation using chiral phosphine-phosphite⁵ and phosphine-phosphinite ligands.⁶ Here we report an asymmetric synthesis of γ butyrolactones via rhodium-catalyzed hydroformylation of allylic alcohols.

Cinnamyl alcohol (1a) was first employed as a substrate and the reaction conditions were examined. Hydroformylation of 1a gave the lactol 2a as an exclusive product and the regioisomer 3a was not detected by ¹H NMR spectroscopy. Introduction of the formyl group at the α -position to the aromatic substituent is common in Rh-catalyzed hydroformylation of aryl-substituted olefins.⁷ The crude lactol was converted to the lactone 4a by oxidation with silver carbonate⁸ and the *ee* was determined by HPLC. The results are summarized in Table 1. In a series of chiral ligands tested, the phosphine-phosphite ligand (*R*,*S*)-BINAPHOS gave the best results (runs 2-4). Longer reaction times caused a decrease in the *ee*, probably due to the racemization of the product (runs 5,6). In this reaction, a notable pressure effect was observed on the enantioselectivity (runs 2 and 6-10). The enantiomeric excess decreased at both higher and lower total pressure of H₂ and CO. This is in sharp contrast to the fact that the enantioselectivity was observed to be independent of H₂/CO pressure in the hydroformylation of styrene and 1-hexene using the same catalyst system in the pressure range of 10-100 atm.⁹

(R,S)-BINAPHOS

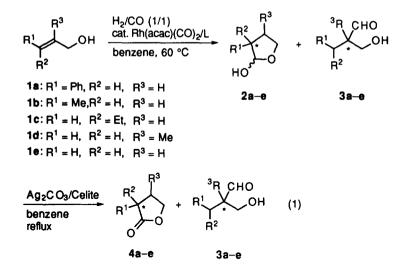


Table 1. Asymmetric Hydroformylation of Cinnamyl Alcohol (1a)^a

Run	Ligand	H ₂ /CO (atm/atm)	Time (h)	Conv. to 2a ^b (%)	Yield of 4a (%) ^c	%ee of 4a ^{d,e}
1	PPh3	50/50	72	>99	86	
2	(R,S)-BINAPHOS	15/15	30	>99	87	88 (+)
3	(S)-BINAP	15/15	30	0	_	
4	(R)-2-Nap-BIPNITE	15/15	30	>99	86	5(+)
5	(R,S)-BINAPHOS	50/50	57	>99	85	6 (+)
6	(R,S)-BINAPHOS	50/50	20	53	45	12 (+)
7	(R,S)-BINAPHOS	25/25	30	65	54	15 (+)
8	(R,S)-BINAPHOS	20/20	30	73	60	40 (+)
9	(R,S)-BINAPHOS	5/5	30	64	57	75 (+)
10	(R,S)-BINAPHOS	0.5/0.5	30	22	n.d <i>f</i>	70 (+)

^a A degassed solution of 1a (2.9 mmol), Rh(acac)(CO)₂ (0.014 mmol), and a ligand (4 equiv. to Rh) in benzene (1.0 mL) was placed in a 50-mL autoclave under argon and then the system was pressurized with H₂/CO (=1/1). After stirring at 60 °C, the crude lactol 2a was oxidized with 3.75 g (2.5 equiv.) of Ag₂CO₃/Celite (1.75 mmol/g) in refluxing benzene (100 mL) for 8 h. The resulting lactone 4a was isolated by column chromatography on silica gel (hexane/EtOAc = 7/3). ^b Determined by ¹H NMR spectroscopy of the crude reaction mixture without evaporation of the solvent. The lactol was obtained in almost 1:1 mitures. ^c Isolated yield. ^d Determined by HPLC analysis (Daicel CHIRALCEL OJ, hexane/2-propanol = 97/3, 1.0 mL·min⁻¹, UV detector, 254 nm). ^e The sign of the optical rotation is shown in parentheses. ^f Not determined.

A series of allylic alcohols were then subjected to asymmetric hydroformylation and representative results are shown in Table 2. For alkyl-substituted allylic alcohols 1b-c, the product distribution is highly dependent on the reaction conditions. Particularly, the reaction of 1c afforded a straight-chain aldehyde, 6-hydroxyhexanal as a by-product. The latter likely arises *via* isomerization of 1c to 4-penten-1-ol prior to

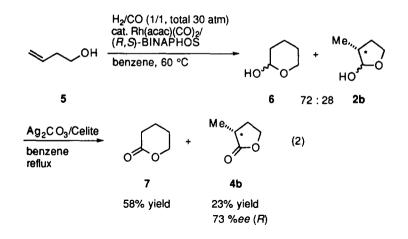

the hydroformylation reaction (run 2).¹⁰ In contrast, no isomerization occured during to the hydroformylation of (Z)-2-butene and (Z)-3-hexene with the same catalyst.^{5b} The *ee*'s of **4b**-c are much lower than that of **4a** and rather lower than our previous results of the hydroformylation of internal aliphatic olefins with the same catalyst system (48% *ee* for (E)-2-butene, 79% *ee* for (Z)-3-hexene).^{5b} Intramolecular coordination of the hydroxyl group to the rhodium center in the transition state may be concernable, but detailed evidence has not been obtained for such a possibility. An allylic alcohol with a substituent at the β -position, **1d**, afforded the lactol **2d** as a single product but the *ee* was low (run 3). The high regioselectivity can be explained by steric hinderance at the C2-position. Hydroformylation of allyl alcohol (**1e**) showed the regioselectivity of **2e**/3e = 90/10. This **2e**/3e ratio corresponds to the *normal/iso* selectivity of terminal olefins and is higher than that observed for 1-hexene (*normal/iso* = 76/24, 75% *ee* for the *iso*-aldehyde).^{5a} Thus in this case, contribution of the hydroxyl group to the regioselectivity has again been observed. When the hydroxyl group of **1e** is protected with an acetyl group, the hydroformylation afforded a complex mixture of aldehydes, probably due to the isomerization of the double bond before hydroformylation.¹¹

Table 2. Asymmetric Hydroformylation of Allylic Alcohols 1b--e Catalyzed by $Rh(acac)(CO)_2-(R,S)$ -BINAPHOS^a

Run	Substrate	H ₂ /CO (atm/atm)	Conv ^b (%)	2/3/others ^c	Yield of 4 (%) ^d	%ee of 4	%ee of 3
1	1b	15/15	51	26/74/0	n.d <i>f</i>	27 (R) ^e	n.df
2	1 c	15/15	> 99	56/18/128	13	11 (-) ^h	n.d <i>f</i>
3	1 d	15/15	54	>99/<1/0	37	12 $(S)^{i}$	
4	1 e	15/15	> 99	90/10/0	—		16 ^j

^a The reaction and the analyses of the product were carried out in the same way as described in footnote a of Table 1 unless otherwise stated. The reaction was stopped after 30 h. Oxidation of 2 was carried out with 4 equiv. of AgCO₃/Celite. ^b Conversion of the olefins into aldehydes. ^c Determined by ¹H NMR of the crude mixture. ^d Isolated yield of the lactone 4 by column chromatography and distillation. ^e Determined by HPLC analysis (CHIRALCEL OD, hexane/2-propanol = 99/1, 0.5 mL·min⁻¹, UV detector, 230 nm). For absolute config., see ref 2a. ^f Not determined. ^g 2c/3c/6-Hydroxyhexanal = 56/18/12. ^h Determined by HPLC analysis (Daicel CHIRALCEL OD, hexane/2-propanol = 994/6, 1.0 mL·min⁻¹, UV detector, 230 nm). The sign of the optical rotation is minus. ⁱ Optical purity. Determined by comparison with data in ref. 12. ^j Determined by ¹H NMR of the crude reaction mixture using Eu(hfc)₃ as a chiral shift reagent. The aldehyde could not be isolated in pure form and the absolute configuration was not determined.

A homoallylic alcohol, 5, was also subjected to the asymmetric hydroformylation.¹³ The regioselectivity of 6/2b (72/38 = normal/iso) and the *ee* of 2b (73%) are similar to that of 1-hexene. This result suggests that the hydroxyl group has no effect on the reaction rate and selectivity in this substrate.

References and notes

† Deceased on Oct. 4, 1995.

1) Recent references include: (a) Samsel, E. G.; Norton, J. R. J. Am. Chem. Soc. 1984, 106, 5505. (b) Alper, H.; Hamel, N. J. Chem. Soc., Chem. Commun. 1990, 135. (c) El Ali, B.; Alper, H. J. Org. Chem. 1991, 56, 5357. (d) Tamaru, Y.; Hojo, M.; Yoshida, Z. J. Org. Chem. 1991, 56, 1099. (e) Kondo, T.; Kodoi, K.; Mitsudo, T.; Watanabe, Y. J. Chem. Soc., Chem. Commun. 1994, 755. (f) Yu, W.-Y.; Bensimon, C.; Alper, H. Chem. Eur. J. 1997, 3, 417.

2) Other reported approaches to synthesize these compounds in optically active forms are, for example, asymmetric hydrogenation; (a) Ohta, T.; Miyake, T.; Seido, N.; Kumobayashi, H.; Takaya, H. J. Org. Chem. **1995**, 60, 357. (b) Ohta, T.; Takaya, H.; Kitamura, M.; Nagai, K.; Noyori, R. J. Org. Chem. **1987**, 3174. Isomerization of chiral 4,7-dihydro-1,3-dioxepin; (c) Koga, Y.; Sodeoka, M.; Shibasaki, M. Tetrahedron Lett. 1994, 35, 1227.

3) (a) Fell, B.; Barl, M. Chem. Z. 1977, 101, 343. (b) Matsumoto, M.; Tamura, M. J. Mol. Cat. 1982, 16, 195. (c) Trzeciak, A. M.; Ziółkowski, J. J. J. Mol. Cat. 1987, 43, 15.

4) Bottegi, C.; Gazz, Chim. Ital. 1975, 105, 233.

5) (a) Sakai, N.; Mano, S.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, 7033. (b) Sakai, N.; Nozaki, K.; Takaya, H. J. Chem. Soc., Chem Commun. 1994, 395. (c) Nanno, T.; Sakai, N.; Nozaki, K.: Takaya, H. Tetrahedron: Asymmetry 1995, 6, 2583. (d) Horiuchi, T.: Ohta, T.: Nozaki, K.: Takaya, H. Chem. Commun. 1996, 155. (e) Nozaki, K.; Sakai, N.; Nanno, T.; Higashijima, T.; Mano, S.; Horiuchi, T.; Takaya, H. J. Am. Chem. Soc., in press.

6) Nozaki, K.; Li, W.-g.; Horiuchi, T.; Takaya, H. Saito, T.; Yoshida, A.; Matsumura, K.; Kato, Y.; Imai, T.; Miura, T.; Kumobayashi, H. J. Org. Chem. 1996, 61, 7658.
7) Tanaka, M.; Watanabe, Y.; Mitsudo, T.; Takegami, Y. Bull. Chem. Soc. Jpn. 1974, 47, 1698.
8) Balogh, V.; Fetizon, M.; Golfer, M. J. Org. Chem. 1971, 36, 1339.

9) Horiuchi, T.; Shirakawa, E.; Nozaki, K.; Takava, H. submitted for publication.

10) A similar isomerization is reported for Co-catalyzed systems; Falbe, J.; Schultz-Steinem, H. J.; Korte, F. Chem. Ber. 1965, 98, 886.

11) A similar isomerization was reported; Pruett, R. L. Adv. Organomet. Chem. 1979, 17, 1.

- 12) Levenberger, H. G. W.; Boguth, W.; Barner, R.; Schmid, M.; Zell, R. Helv. Chim. Acta 1979, 62,
- 455.
- 13) An example is reported for hydroformylation of a chiral homoallylic alcohol. Wuts, P. G. M.: Obrzut, M. L.; Thompson, P. A. Tetrahedron Lett. 1984, 25, 4051.

(Received in Japan 7 April 1997; revised 14 May 1997; accepted 16 May 1997)